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Abstract-The solidification and convection of the pure binary eutectic silicate system diopside-anorthite 
(DikAn) is numerically modeled. A mass-weighted enthalpy of fusion is used to account for the second 
solid phase (An) which crystallizes at the solidus temperature. Variable under-relaxation is used to aid 
convergence of the momentum equations in our implementation of the SIMPLER algorithm used to solve 
the two-dimensional continuum conservation equations. Numerical experiments of the solidification of 
Di80 melt show that a large temperature drop occurs across the solid and mush regions which decreases 
convective vigor in the liquid. Interesting compositional segregation patterns are produced during the 

solidification of Di80. 

1. INTRODUCTION 

MUCH PROGRESS has been made recently in the 
numerical modeling of solidification and convection 
in systems of metallurgical interest by the devel- 
opment of single-region continuum models readily 
amenable to numerical solution [l-3]. Meanwhile 

numerical modeling of phase change and convection 
in geological systems has received much less attention 
despite the fact that solidification and convection 

are fundamental processes in magmatic evolution. 
Because the single-region continuum models devel- 
oped for metallurgical application are general, they 
can be used with some modifications to model 
silicate melt. The recent studies of solidification and 
convection in metallurgical systems provide the 

framework for studies of heat transfer and convective 
dynamics associated with the cooling and solidi- 
fication of magma bodies. 

The focus of this paper is on solidification and 
convection of silicate melt. We have selected for con- 
sideration the diopside-anorthite (Di-An) pure 

binary eutectic system for its relevance to the evol- 
ution of basaltic magma, the most abundant magma 
on earth. We present a model and results from the 
numerical code developed for phase change and con- 
vection in this viscous pure binary eutectic system. 
Numerical simulations of previously published cases 

of metallurgical interest verify the accuracy of the 
model and the numerical code. An example numerical 
experiment of phase change and convection in Di- 
An demonstrates the capabilities of the model. The 
ultimate goal of these studies is the understanding of 
the processes of phase change and convection and 
their effects on the thermal and compositional evol- 
ution of planetary magmatic systems. 

2. REVIEW OF PRIOR WORK 

2.1. Mutevials science 
Several single-region models of solidification and 

convection in systems of metallurgical interest have 
been put forward in recent years [l&3]. The equations 
in single-region models are valid over the entire solu- 

tion domain and obviate phase interface tracking as 
required in multi-region models. Single-region for- 

mulations have proven convenient because of their 
amenability to solution by the SIMPLER algorithm, 
a primitive variable, iterative, control-volume finite 
difference algorithm [4, 51. 

The derivation of the continuum formulation of 
Bennon and Incropera [l] is based on classical mixture 
theory. The momentum equations are written for the 
mixture velocities, relying on the value of the per- 
meability in each control volume (a function of the 
fraction solid through the Blake+Kozeny-Carman 
relation) to determine whether flow through porous 
mush is important in that control volume. The 
assumption of local thermodynamic equilibrium is 

made implying : (1) all phases within a control volume 

are at the same temperature ; (2) the compositions of 
the solid and liquid coexisting in the control volume 
are determined by the phase diagram; and (3) the 
lever rule determines the relative proportions of solid 
and liquid present in the control volume. The capa- 

bilities and limitations of the formulation have been 
shown through modeling solidification and con- 
vection in the system NH,Cl-H20 [6], and com- 
parisons of numerical and laboratory results [7]. 

Volume-averaging is used by Beckermann and 
Viskanta [2] to arrive at single-region equations simi- 
lar to those of Bennon and Incropera [I]. The momen- 
tum equation is written in terms of the velocity of the 
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difference, h& -h,,, 
composition 
heat capacity 
depth of domain 
chemical diffusivity 
Darcy number 
acceleration of gravity 
cnthalpy 
projection of h,,, to T,r 
species flux 
thermal conductivity 
permeability 
width of domain 
Lewis number 
iteration number 
pressure 
heat flux 
ramp slope parameter 
thermal Rayleigh number 
compositional Rayleigh number 
source term 
Stefan number 
time 
temperature 
horizontal velocity 
vertical velocity 
velocity vtector 

NOMENCLATURE 

Creek symbols 
% coefficient of isobaric thermal expansion 

I” ramp under-relaxation parameter 

B coefficient of compositional expansion 
K thermal diffusivity 

P dynamic viscosity 
1 kinematic viscosity 

P density 
general field variable 
stream function. 

Subscripts 
eut 

I 
liq 
m 
r 
s 
Sl 

s2 
SOI 

0” 

eutectic 
fusion 
initial 
liquid 
liquidus 
pure end-member 
ratio 
solid 
solid 1 (diopside) 
solid 2 (anorthite) 
solidus 
wall 
reference value. 

horizontal coordinate 
vertical coordinate. 

Superscript 
^ dimensionless variables. 

liquid and reduces to the appropriate form depending 
on the value of the fraction solid. Local thermo- 
dynamic equilibrium and the lever rule are used to 
relate temperature, composition, and fraction solid 
within a control volume. Beckermann and Viskanta 
[?] present a direct comparison of numerical vs lab- 
oratory results which points out the challenge of 
modeling processes such as solidification and con- 
vection which occur over a large range of length scales. 

A two-phase model was proposed by Voller et al. 
[3]. In this formulation, momentum equations are 
written for each of the phases, solid and liquid, with 
source terms to account for phase interaction. 
Enthalpy and species equations are also written for 
both phases, and appropriate interphase terms 
attached. An example case where there is no dis- 
tinction between phases in the mush (i.e. the mush 
region is treated as a single pseudo-fluid) and two 
different illustrative cases of models with distinct 
phases in the mush (dispersed microstructure and dis- 
tinct microstructure) were compared. The conclusion 
that different limiting cases of the model are appro- 
priate in different limiting physical situations is a use- 
ful reminder that the realm of applicability of the 

various models must be understood when modeling 
phase change and convection. 

The study of crystallization in an aqueous sodium 
carbonate solution by Thompson and Szekely [X] 
spans the gap between materials science and geology 
in terms of numerical modeling of phase change and 
convection in so far as crystallizing aqueous systems 
have been used in the past as analogs to magma bodies 
[9, IO]. The work of Smith [I I] considers the effect of 
solidifying magma on convective instability and vigor 
by linear stability analysis and in one dimension (see 
also, Marsh [I 21). The model of Worster et al. [ 131 
includes important kinetic effects on the crystal- 
lization of melts in the Di-An system, but its simpli- 
fied one-dimensional approach does not elucidate 
the flow field. 

Other prior numerical studies of magmatic con- 
vection have assumed single-phase convection [ 141 or 
they have modeled the effects of solidification on the 
composition field heuristically by defining a flux-type 
boundary condition which crudely models the pro- 
duction of light component during solidification of 
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magma [15]. In these models, sidewall and bottom 
or top thermal and compositional boundary condi- 
tions must be arbitrarily chosen as either Dirichlet 
(constant values of temperature or composition) or 
Neumann (constant fluxes of heat or mass) 1161. In 
fact, the boundary between magma and the sidewall 
is gradational from relatively fluid magma in the 
interior, to mush, to fully solidified magma along the 
cold wall. The interface between mush which is too 
viscous to convect and more fluid magma constitutes 
a rheological sidewall. The thermal boundary con- 
ditions at this sidewall are influenced by the liberation 
or consumption of latent heat due to local phase 
change. This sidewall, the boundary between what is 
effectively a solid phase and the liquid magma, moves 
as solidification proceeds and its location is part of 
the solution of the continuum solidification equations. 
Thus continuum solidification models eliminate the 
necessity of choosing arbitrary boundary conditions 
at the solid-melt interlace, as the boundary between 
magma and solid rock is part of the solution. 

3. DIFFERENCES BETWEEN METALLURGICAL 

AND GEOLOGICAL SYSTEMS 

3.1. Physical enEiironment 
Magma bodies are large regions (volume up to lo4 

km”) of molten and partially-molten rock (usually 
silicate melt) underlying active volcanic areas in con- 
tinental or oceanic crust at depths generally greater 
than 2 km. Seismic investigations [17], surface heat 
flow measurements [18], and explosive eruptions of 
predominantly liquid magma [ 191 provide substantial 
evidence for the existence of magma bodies. Typical 
dimensions of magma bodies are of the order of IO*- 
IO4 m, whereas length scales of containers in metal- 
lurgical systems are much smaller (lo- ‘-IO’ m). 

Varied conditions in the earth’s crust give rise to a 
great range of dynamic processes which can occur in 
magma bodies from solidification to melting, stag- 
nation to vigorous convection, and thermal and 
chemical isolation to strong connectivity to sources of 
magma below. Similar ranges of processes occur in 
metallurgical applications, but there the processes of 
heating and cooling are controlled in the laboratory. 
Conversely, magma occupies chambers with poorly 
understood boundary conditions and connectivity 
with deeper sources of magma all of which can change 
with time. Because of the large range of potentially 
applicable boundary conditions, we adopt in this 
study for illustrative purposes a simplified model 
domain in which cooling occurs primarily through the 
sidewall and is thermally and chemically disconnected 
from sources below. The model domain is shown 
along with boundary conditions in Fig. 1. The left- 
hand wall is held at a subsolidus temperature while 
all other boundaries are adiabatic. All sides of the 
body are impermeable (no mass flux) and rigid. The 
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FIG. I. Domain and boundary conditions for cakulations of 
solidification and convection. The domain is 1 x 1, rigid, 
impermeable, and insulated on three sides. The left-hand 

sidewall is held at r,. 

objective of the present study is to model phase change 
and convection of silicate melt in the case of sidewall 
cooling. Future studies may consider more realistic 
boundary conditions relative to natural magmatic sys- 
tems. Because of practical limits on the magnitude 
of the Rayleigh number in present computational 
studies, the mode1 domain studied is nowhere near the 
dimensions of an actual magma body. We shall have 
to wait for improvements in both computational 
speed and memory as well as algorithms to tackle the 
problem of high-Rayleigh number convection which 
is associated with large magma bodies. 

3.2. Physical properties 
There are two main features of systems of metal- 

lurgical interest which distinguish them from situ- 
ations of phase change and convection in basaltic 
magmatic systems : (I) binary phase diagrams for sys- 
tems in metallurgy commonly involve a significant 
range of solid solution whereas the Di-An system is 
pure binary eutectic in character ; (2) the viscosities of 
liquid metals are very small and the thermal diffus- 
ivities are very large in comparison with silicate melts 
at near-liquidus temperatures making the Prandtl 
number (Pr) vastly different in the two cases (typical 
basaltic magma has Pr = 103, while liquid metals have 
Pr = lo-*). It is important to note that smaller vis- 
cosity affects not only momentum transport through 
Pr but also crystal nucleation and growth rates (not 
considered here) which can profoundly affect crystal 
morphology. We have accommodated the pure binary 
eutectic phase diagram which is applicable to the sol- 
idification of basaltic magma through definition of an 
effective heat of fusion to be discussed in the next 
section. While the continuum models put forward 
recently have sufficient generality to accommodate the 
large viscosity of silicates in theory. practical com- 
putational difficulties in calculating momentum trans- 
port can arise from the large Prandtl number of silicate 
melt. This difficulty requires modification of the usual 
numerical scheme successful in low-Prandtl number 
systems and will be discussed in a later section. 
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4. PURE BINARY EUTECTIC SYSTEM Table 2. Assumed thermophysical prop- 

DIOPSIDE-ANORTHITE erties of Di80 

The model silicate system we have chosen is the 
diopside-anorthite (Di-An) pure binary cutectic sys- 
tem for which the thermophysical properties are given 
in Table I. The Di-An system approximates basalt of 
which about 20 km’ solidihcs each year, mostly along 
mid-ocean ridge spreading centers [20]. Figure 2 
shows the phase diagram for Di--An with the hquidi 

linearized to simplify the lever-rule phase relations. A 
bulk composition of Di80 at T = 1337 C was chosen 
as the bulk initial composition and temperature for 
the example numerical experiment, while the left-hand 
wall is held at a subsolidus temperature, T = 1265 C. 
The thermophysical propertics of Di80 arc given in 
Table 2. It should be noted that the viscosity of silicate 
melts is temperature and composition dependent [21]. 
The continuum model enables the inclusion of these 

Property Units ValLlc 

T h, K I606 

‘r,,,, K 154X 

‘;> Jkg ‘K I006 

; 
m 2 s ’ IO ‘I 
m’s ’ IO * 

I’ mkg Is-’ 3.W 
a K ’ IO ’ 
B IO J 

t Reference [21] at T = 1610 K 

effects. However, for simplicity in the present study, 

we have assumed a constant liquid viscosity. 
Briefly, the behavior of the system is as follows. 

First, as heat flows out of the Icft-hand wall, sol- 
idification occurs along the wall. The first solid formed 
is pure Di. Where the temperature is between the 
solidus and liquidus, pure Di coexists with liquid. 

At any location where the temperature is below the 
solidus, such as along the left-hand wall, a mixed solid 
of composition 80% Di and 20% An is present. At 
the solidus temperature, there can be liquid, pure Di. 
and a mixed solid of eutectic composition (Di60). 
depending on the local value of enthalpy. The pro- 
portions of liquid, pure Di and the mixed solid of 
eutectic composition (Di60) change in each control 
volume as the enthalpy decreases until the point at 
which melt is gone and the solid remaining is a mixed 
solid of Di80 composition. 

Table I. Thermophysical properties of diopside and 
anorthite 

Property 
Values 

Units Di An 

r,,, K 1665 I X30 
T \,>I K 154X 154X 
17, IO’J kg-’ 3.514 2.914 
I’ kgm~’ 265 I 2562 

References [32, 331. 

Di An 

FIG. 2. Diopside-anorthite (Dig-An) pure binary eutectic 
phase diagram. Thermophysical properties are given in Table 
I. The initial composition, C,,, is Di80. As shown, at any 
given T between TLiq and T,,,,, the fraction solid is given 
by the ratio rr/(cr+h). Below T,,,,. a mixed solid of DiXO 

composition exists. 

The energetics of a second solid phase (pure An) 
are treated by defining a mixed solid of eutectic com- 
position (Di60) with a corresponding mass-weighted 

effective heat of fusion equal to 

11: = 0.60/z,-,,, +0.40h,,+ (1) 

which gives an effective heat of fusion (I$) of 
3.31 x IO’ J kg ‘. This approximation is valid because 
of the similarity of the heat capacities of the two 
silicate end-members (Table 3). That is, compared to 
the differences in heats of fusion, the differences in 
heat capacities of the two end-members can be 
neglected. The different heats of fusion are considered 
explicitly by mass averaging the heats of fusion of Di 
and An. This differs from prior studies of metal- 
lurgical systems where solid solution occurs and 
results in a single solid phase at subsohdus tcm- 

Table 3. Heat capacities of diopside and anorthite 
_ 

Di An 

Units T,,, (= 1665 K) T\,,, ( = 1548 K) T,q ( = 1830 K) T\,,, ( = 154X K) 

J kg-’ Key’ 1235 1000 1300 I028 
- _ -____ 

References [32, 331. 
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peratures and thus involves only one solid and one 
heat of fusion at subsolidus temperatures. 

5. MODEL EQUATIONS 

5.1. Dzjisrential equations 
The continuum phase change and convection equa- 

tions for an incompressible fluid in two-dimensions 
are [l] 

!!!+!!Y=o 
ay 

( au au au 
PO z+uj;+uay 

> 

ap a au 
=-a<+& p”ax ( > 

(2) 

+; pg -+4J (3) 
( ) * 

( 

au 
g+ug+v- 

> 

aP av 
PO 

+ 
=--+A pLax 

ay dx ( ) 

a au 

+,,%ypg ) ( 1 
- $ (u--J (4) 

+;(Dg)+&(Dv)+;(DF) 

- 
( 

a(c, - c)(u - 4) 

ax ) ( 

_ act, --c>(L~-~1s) (@ 

ay > 
where symbols are as defined in the Nomenclature. It 
is assumed that the density obeys the relation 

P = P~(l--a(T-~s,,)-B(C-C,,)) (7) 

where T,,, is 1275°C and C,, is pure Di. It is further 
assumed that density changes are important only in 
the body force term (i.e. the Boussinesq approxi- 
mation is valid) and that the viscosity can be a func- 
tion of T or C (but is assumed constant here (i.e. 
p = pO, and pc = p/p0 = 1 in equations (9)-(13) 
below)). 

The above equations (2)-(6) are appropriate for 
systems in which the liquid phase flows through the 
porous mush in the two-phase solid-liquid region [I]. 
The last terms on the right-hand side of equations (3) 
and (4) are the Darcy flow terms ; the last terms on 
the right-hand side of equations (5) and (6) are the 
interphase transport terms. These terms account for 

the flow of liquid through the porous mush and the 
associated interphase transport of heat and chemical 
species. The full equations (2)-(6) constitute the rela- 
tive motion (RM) model. For systems such as waxes 
in which the solid phase is indistinguishable from 
the liquid phase and thus there is no relative motion 
between melt and solid, one can define a viscosity 
function based on the fraction solid (see recommen- 
dation of Metzner [22]) and omit the Darcy flow 
terms in equations (3) and (4) and the interphase 
transport terms in equations (5) and (6). The reduced 
set of equations constitutes the no-relative motion 
(NRM) model. 

Prior studies [ 1,2] used the Blake-Kozeny-Carman 
equation to relate the permeability to the fraction 
solid (,f,) for all values of _& in the RM model 

We adopt here the same formulation. However, it 
should be noted that the flow in dilute mush (where 
liquid is the connected phase) and the flow in con- 
centrated mush (where solid is the connected phase) 
are different. Specifically, flow of dilute mush can be 
more accurately modeled as a two-phase fluid the 
viscosity of which increases as the fraction of solid (X) 
increases. The flow in concentrated mush is accurately 
modeled by Darcy’s law with permeability represented 
by equation (8) for laminar flow. Explicit con- 
sideration of the differences between flow in dilute 
mush and in concentrated mush gives rise to a hybrid 
model. Results of our hybrid model, which combines 
the viscosity dependence on f, in dilute mush (through 
the equation recommended by Metzner [22]) and the 
permeability dependence on fi in concentrated mush 
(through the Blake-Kozeny-Carman equation), have 
been presented elsewhere [23]. In the present study, 
we consider the standard RM model consistent with 
prior work in materials science. 

Introducing the following scales : 

and the following definitions of dimensionless groups : 

K K”o 

Rs = sB(G - G,)L3 , St = C/J(To-TS”J 
K”o (h& - ko, 1 

Le=-i, Da=: 
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the equations are put into dimensionless form where 
hats have been suppressed 

dh ah ah 

a(h, -h)(u-u,) _ 
ax 

+?&Ey”)+;;(;a(y) 

( act, -c)(u-4) qc,-C)(v-v,) 
- ..~ 

ax J-C- ~.~ 
5, ). (13) 

Although several classical dimensionless numbers 
appear in the equations above, their significance is 
slightly different in phase-change systems from that 
in single-phase systems. For example, the thermal 
Rayleigh number (Ra) gives an indication of the 
importance of thermal buoyancy effects relative to 

viscous effects in natural convection ; the com- 
positional Rayleigh number (Rs) gives the analogous 
relation for compositional buoyancy. Nevertheless, 

the convective heat transfer cannot be accurately 
related to Ra in a scaling relation (as done by Roberts 
[24] for single-phase convection) when Ra is based on 
the width of the whole domain because for much of 
the solidification evolution only a small part of the 
domain contains liquid capable of convection. The 
Lewis number (Le) is the ratio of thermal to chemical 
diffusivity and thus provides an indication of the ratio 
of thermal boundary layer thickness to chemical 
boundary layer thickness. However, since chemical 
diffusivity is a function of the fraction solid in this 
continuum model (i.e. diffusion in the solid is neg- 
ligible compared to diffusion in the melt), scaling 

relations for boundary layer thicknesses using Le can 
only be applied in pure liquid regions. The Prandtl 
number (pr) indicates the importance of inertia to 
viscous effects and, in the NRM model, should only 

be applied in pure liquid regions. The Stefan number 
(9) indicates the magnitude of superheat relative to 
the heat of fusion. In the model problem considered 
here, the amount of superheat goes to zero as the 
system solidifies. The Darcy number (Du) is only rel- 
evant in regions where solid is present and plays no 

role in the pure liquid region. It should further be 
noted that other quantities (e.g. Table 7) and the form 
of the phase diagram (Fig. 2) enter into phase change 
problems in addition to the above classical dimen- 
sionless numbers. 

5.2. Additionul equations 

Supplementary equations are required to relate the 
enthalpy to temperature, the temperature to fraction 
solid, and the phase compositions to fraction solid. 
With reference to the generalized enthalpyytem- 
perature diagram (Fig. 3), and assuming local thermo- 
dynamic equilibrium, the dimensional equations in 
Table 4 relate the temperature (T) and fraction solid 
(,f;) to enthalpy (h) depending on the enthalpy at any 
given location in the pure binary eutectic model. 

In general, the enthalpy of the mixture (h) is given 

in terms of the enthalpy of the solid (h,), the enthalpy 
of the liquid (h,), and the fraction solid (,f,) by 

where 

h = ./;h, + (1 -./;)h, 

It, = C,, T 

TSOI Thq T 

FIG. 3. Enthalpy-temperature diagram showing the four 
regions (A, B. C, D) of different h-$-T relations. h& is the 
projection of the superliquidus enthalpy down to T,,,. h: is 
the mass-weighted heat of fusion of the mixed solid of Di60 
composition.-h;f, -h,,, is the enthalpy scale in the Stefan 
number. Between T,,,, and T,,,, one uses hf (the heat of fusion 
of diopside) for the source term which accounts for release 
of latent heat. At T,,,. the mass-weighted heat of fusion 
(h:) is used to account for enthalpy produced during the 
formation of diopside and anorthite which solidify in eutectic 

proportions. 
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Table 4. Relations between enthalpy (h), fraction solid cf,), 
and temperature (T) in the pure binary eutectic model in the 

four different regions of Fig. 3 

Region A T 
- 

A 0 h - (G, -k,,) 
CP 

B root of equation (18) 
T,,, - T,L 
___ 

1 -.A 

C 
h - h,,, 

l-h* T \“I 

D 1 
h 

CD 

and 

and where it is assumed that there is only one heat 
capacity (c,,) in the system, a reasonable approxi- 
mation for Di-An (Table 3) and most silicate systems. 
The term h& is simply the projection of the super- 
liquidus enthalpy curve down to T,,, 

The temperature in subsolidus and superliquidus 
regions (D and A, respectively) is linearly related to h 
through the heat capacity (c,) (Fig. 3). In regions D 
and A, f, is unity and zero, respectively. 

In supersolidus and subliquidus region B of Fig. 3, 
f< is given by 

T- Tiq 
.A = __ 

T-T,’ 
(17) 

Substituting equations (IS)-( 17) into equation (14) 
and simplifying, we arrive at the equation giving the 
enthalpy of the mixture in terms off; for region B 

h = (i$),:- (2A;--)f,+ (qg 
(18) 

where 

A = h;r, -h,,, (19) 

Equation (18) is valid where the fraction solid (fJ 
does not exceed the value obtained when T just 
reaches T,,, (i.e. J; < (T,,, - T,,,)/(T,- T,,,)) during 
cooling in region B. Newton-Raphson iteration is 
used to solve equation (18) for fraction solid given 
enthalpy. The T-J7 relation in region B is given by 
equation (17) or, equivalently, as shown in Table 4. 

In supersolidus region C where 1 >f, > 
(T,,, - T,,,)/(T,,, - T,,,), a simple linear relation using 
the enthalpy of fusion of the eutectic mixed solid (h:) 
is used to calculate ,f,. 

Additional equations relate phase compositions 
and mixture properties to those of the particular 

phases in the pure binary eutectic model with an 
immobile solid phase : 

(20) 

v = (1 -,fJv, (22) 

D = (I -j;p,. (23) 

The derivation of equation (21) is presented in the 
Appendix. 

6. SOLUTION METHODOLOGY 

6.1. General method 
Each of the differential equations can be cast into 

the general form 

a(p4) a(p+) a(p$) 
at+“-- ~ 8~ +' ay 

where 4 denotes any one of the dependent variables 
of the mixture. The source term S accounts for the 
Darcy flow and body force terms in the momentum 
equations, the source of latent heat and relative phase 
motion in the energy equation, and the source of 
species and relative phase motion in the species equa- 
tion. Each of the individual terms of the differential 
equations (9)(13) can be put into the general form 
above. These terms have been set down by Bennon 
and Incropera [I, 251 to which we refer the reader 
for explicit details and exceptionally clear discussion. 
Once in this general form, the equations are amenable 
to solution by the primitive variable, control-volume- 
based, iterative finite difference SIMPLER algorithm 
[4, 5, 26, 271. The use of primitive variables (u, L’, and 
p) allows the direct extension to three dimensions. 

In our implementation of the SIMPLER algorithm, 
we have used a standard tridiagonal matrix solver 
(Thomas algorithm) for line traverses in the X- and y- 
directions while doing sweeps alternately left to right 
and then bottom to top over the domain. To improve 
the convergence of the sweeps with the Thomas algo- 
rithm, we use improved off-line values as defined 
in enhancement number 5 of Van Doormaal and 
Raithby [28]. Five sweeps in the x- and y-directions 
are carried out for the momentum, enthalpy and 
composition equations. For the pressure equations. 
sweeps are carried out until the residual, defined by 
the degree to which the pressure equation is satisfied, 
is reduced to a certain small fraction of its value at 
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the beginning of the sweeps (this is enhancement num- 
ber 6 of Van Doormaal and Raithby [28]). About 
20-50 sweeps of the pressure equation are typically 
required lo reduce the residual to a given small frac- 
tion of its initial value. In order to properly consider 

the fluxes in the continuum formulation as explained 

by Bennon and lncropera [25], upwinding is used to 
treat advective terms rather than the power-law 
scheme. The discretized equations are solved over 

a uniform rectangular, staggered mesh. The sup- 
plementary relations and Newton-Raphson iteration 
for finding the fraction solid from the enthalpy, where 
necessary. are performed at each iteration. 

The poor convergence properties of control-volume- 
based, iterative, finite difference schemes at large 

Rayleigh (Rn) and Prandtl (Pr) numbers are well 
documented [29]. The difficulty arises because of the 

strong bi-directional coupling between the energy and 
momentum equations which arises in natural con- 
vection when Pr is large. In natural convection, there 
is always a strong one-way coupling from the energy 
equation to the momentum equation which is con- 
trolled by the magnitude of Ru through the body force 
term. This one-way coupling causes no problems in 
iterative methods. To understand the bi-directional 

coupling problem intuitively, assume for the moment 
that the magnitude of Pr is controlled solely by the 
thermal diffusivity. If thermal diffusivity is very large, 
Pr is small and the energy equation is diffusion domi- 
nated. In this case, the momentum equation does not 

feed back into the energy equation significantly since 
advection terms in the energy equation are not impor- 
tant relative to diffusion terms. In this case, there is 
one-way coupling from the energy equation to the 
momentum equation through the body force terms 
and convergence is facilitated. Conversely. when ther- 
mal conductivity is small, Pr is large and advection 
terms are important in the energy equation. The 
energy to momentum equation coupling still exists 
through the body force term. but now there is also 
strong momentum to energy equation coupling 
through the advection terms in the energy equation. 
This constitutes bi-directional coupling which 

impedes convergence of the iterative method [29]. 
Convergence rates in natural convection at large Pr 

and RLI can be improved if the bi-directional coupling 
between the energy and momentum equations can be 
decreased. The magnitudes of Ra and Pr in the physi- 
cal system being modeled control the initial coupling, 
but the use of variable under-relaxation within a time 
step can vastly increase convergence rates. In general, 
the technique we have used involved using pro- 
grcssively smaller values for the under-relaxation par- 
ameters in the momentum equation. This pro- 
gressively decouples the momentum equation from 
the energy equation and leads to faster convergence. 
Specifically, a ramp under-relaxation function is 

defined as follows : 

E, = E,,, e - H,r (25) 

where LX,, and ctU, are the current and initial momentum 
under-relaxation parameters, respectively, R deter- 
mines the slope of the ramp. and n the iteration 
number. Variable under-relaxation begins after five 
iterations with LX,,, as the under-relaxation parameter. 
A slope value of 0.7 for R provided sufficient decoup- 
ling for reasonable convergence rates. 

6.3. Conwr~pnce critwiu 

The convergence of the momentum equations is 
governed by the satisfaction of the continuity equa- 
tion (conservation of mass, equation (9)) in each con- 
trol volume. It is important to note that the con- 
vergence criterion for the momentum equations is 

absolute and based on the close satisfaction of the 
continuity equation and not on relative changes in 
velocity. No false convergence is caused by the ramp 
under-relaxation technique ; at iterative convergence, 
the continuity equation is satisfied to one part in 
2 x IO5 in each control volume. 

A gently ramping under-relaxation (R = 0.05) was 
used in the energy and species equations to speed 
convergence as well. Convergence criteria are that 
local changes in enthalpy, composition, and fraction 
solid and the average heat extracted from the left-hand 
wall were all less than I x 10 ’ from one iteration 
to the next. Because these arc relative-change con- 
vergence criteria, one must be careful when using vari- 
able under-relaxation to avoid false convergence. The 
values of the under-relaxation parameters for the 
energy and species equations upon convergence were 
always several orders of magnitude greater than the 
convergence criterion itself. The number of iterations 
to convergence varied between 35 and about 80 and 
was limited by the momentum equations, requiring 
more iterations when velocities were high. Time-step 
size varied with the problem being modeled ranging 

from IO- 4 to 5 x IO 4. 

7. VERIFICATION OF THE MODEL 

In order to check the model and code, simulations 
of previously published results from three different 
studies were undertaken. The first is for a one-dimen- 
sional pure diffusion solidification problem (i.e. 

Ra = Rs = 0) of Bennon and Incropera [25] ; the 
second is for a two-dimensional solidification and 
convection problem of Ramachdran et al. [30] ; and 
the third is for a solidification and convection problem 
of Voller et al. [3]. Bennon and Incropera use the 
continuum model [I] while Ramachdran et al. use a 
multi-region model [30] and Voller et al. use their two- 

phase model [3]. 
The first test case considered is a pure diffusion 

problem in which the left-hand wall of an imper- 
meable and rigid box containing initially super- 
liquidus aqueous ammonium chloride solution is held 
at a subsolidus temperature. The properties of the 
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Table 5. Assumed thermophysical prop- 
erties of ammonium chloride and con- 

ditions for diffusion problem 

Property Units Value 

‘i J kg Km’ 2560 
x Wm~‘K ’ 0.4305 

; 
kgm-’ 107x 
m’s ’ 4.8 x IO_ ‘) 

iI: 
kg rn~‘s~’ 1.3x10 i 

J kg-’ 3.138 x IO’ 
T ‘0, K 257.75 
T h K 306.0 

T”, K 633.6 

T, K 223.0 

C,, 0.700 

CC”, - 0.803 
L m 0.1 
d m 0.1 

Dimensionless parameters 
L<J 28 
Pr 9.0 
SI 0.4344 

system are given in Table 5 and are the same as those 
of Bennon and Incropera [25,3 I] except that only one 
heat capacity was used in our calculation, thermal 
conductivity is the same in solid and liquid, and the 

simulation is for a pure binary eutectic phase diagram. 
Despite these differences, overall agreement between 

the two calculations was good. We used a uniform 

(a) 

grid of 3 1 nodes in x and 6 nodes in _V and a time step 

of 2 x lo-“. Plotted in Fig. 4 are the dimensionless 

temperature (i = (T- TS,,)/(TO - T,,,)), the dimen- 
sionless composition of the liquid (& = (C,,,- C,,)/ 

(Cc,,-C,)), and the fraction solid scalar fields at 
i = 0.026 (t = 240 s). Total CPU time for the cal- 
culation was 50 s on the Cray 2 for 280 s of real 
time. The reader is referred to Bennon and Incropera 

[25] for direct comparison of the scalar fields. Bennon 
and Incropera [25] calculated the liquidus isotherm to 
be at .? = 0.67 ; we find the liquidus isotherm to be at 

1 = 0.62. Such differences between the two results 
might be expected given our use of a single heat 

capacity, single thermal conductivity, and pure binary 
eutectic phase diagram. 

The second problem was that of the solidification 

and convection of pure tin carried out by Ramachdran 
et al. 1301. Pure molten tin is introduced into a mold 
with sidewall temperature maintained below the melt- 
ing temperature in this single-component, pure tin 
system. Using the physical properties of molten tin 
and the same domain, boundary conditions, and equi- 
valent dimensionless parameters as Ramachdran et 
al. [30], we obtained results in close agreement with 
theirs. We used a grid of 15 nodes in the horizontal 
and 30 nodes in the vertical and a time step of 

5 x 10mm4. Plotted in Fig. 5 are the stream function and 
temperature fields at dimensionless time 0.27. Note 

that the domain is scaled to appear with unit aspect 

FIG. 4. Scalar fields for ammonium chloride one-dimensional solidification problem at i = 0.026. 
(a) Isotherms : contour interval is 0.08, f,,,,, = 0.99. (b) lsopleths of C,,, : contour interval is 0.05, C,,, = 

0.803. C,, = 0.70. (c) lsopleths of fraction solid (t) : contour interval is 0.05. f,,,,, = I. 
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(4 (b) 

FIG. 5. Scalar fields for the solidification and convection of pure tin at i = 0.27. (a) Dimensionless stream 
function ($) of the mixture : (i/,,,,, = - 1.06, contour interval is 0.15. (b) Isotherms off field : Fn,,.,, = 0.659 
in upper left-hand corner and the contour interval is 0. IO. The T field shows the conductive profile in the 
solid and the convective profile in the liquid region. Due to differences in the definition of F, the isotherms 
should be compared to those of Ramachdran CI ul. [30] for their general shape only and not for the actual 

values of Y. 

ratio as done by Ramachdran et a/. [30] even though 
the calculation is carried out in a domain which is 2.2 
times taller than it is wide. We calculated the minimum 

dimensionless stream function (tJ,,,) to be - 1.057, 
while Ramachdran et al. [30] report Ic/“,,” equal to 
- 1.0. Because of differences in the definition of 
dimensionless temperature, the isotherms in Fig. 5(b) 
should be compared to those of Ramachdran et al. 

[30] for general character only and not for specific 
values of dimensionless temperature. The two knees 

(stairstep pattern) in the isotherms of Fig. 5(b) near 
the solid-melt interface are sensitive to the number 
of nodes, with smoother shaped isotherms resulting 
when the resolution is increased. The location of the 
soliddmelt interface can be inferred from the stream 
function plot. Our calculation has slightly under- 
predicted the amount of solidification relative to 

Ramachdran et al. [30] at the same dimensionless 
time, perhaps due to our use of a single thermal con- 
ductivity. Overall agreement between our model 
and that of Ramachdran et a/. [30] is good for this 

single-component test problem. Refer to Figs. 4 and 
5 of Ramachdran et al. [30] for direct comparison. 

The third problem investigated was one of the sol- 

idification and convection examples presented by 
Voller et al. [3]. In the problem, a sidewall of a con- 
tainer of superliquidus ammonium chloride solution 
is held at a temperature below the liquidus but above 
the solidus temperature. For these conditions, the 
fraction solid never reaches unity in the domain and 
the end-product is mush. The additional properties 

as given in ref. [3] of aqueous ammonium chloride 
necessary for this convection problem are listed in 
Table 6 along with the values of the dimensionless 
parameters we used ; other properties are as given in 
Table 5. We used a uniform grid of 3 1 nodes in .Y and 
~1 and a time step of 2.5 x 10m4. Figure 6 shows plots 
of the stream function and fraction solid at i = 0.19 

(t = 250 s). Total CPU time for this calculation was 
about 12000 s on the Cray X-MP. Overall agreement 
with Voller et (11. [3] is generally good, with some 
differences. The maximum stream function ($,,,.,,) is 

(b) 

1 
FIG. 6. Scalar fields for the solidification and convection problem of Voller er u/. [3] at i = 0.19 (t = 
250 s). (a) Stream function ($) for the velocity of the mixture: $,,,,. = 1.6 x lo-’ rn’ s- ’ as compared 
with 1.3 x IO-’ m* s-’ calculated by Voller et al. (b) Fraction solid us) field. The ,f; = 0.5 isopleth is at Z = 

0.25 at a height of j = 0.5. Voller et al. [3] show the L = 0.5 isopleth at .? = 0.28 at the same elevation. 
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Table 6. Additional thermophysical prop- 
erties and assumed dimensionless par- 
ameters for the solidification and con- 

vection problem 

Property Units Value 

Cl K-’ 4x 1o-4 
B - 0.025 
K rn’ 5x lO--‘O 
L m 0.025 
d m 0.025 
T0 K 600 
TW K 400 
CO - 0.10 

Dimensionless parameters 
RU 1 x IO6 
RS 2x IO6 
Pi- 9.0 
Le 
Da sX:80-~0 
Sl 3.5 

equal to 1.3 x IO-’ m2 s-’ in their calculation and 
agrees well with our value of 1.6 x IO-.-” m* s- ‘. The 
early stages of a compositionally-driven recirculat- 
ing flow shown in ref. [3] are absent in our results 
at 250 s. In addition, we found better agreement 
between the flow fields in the two models when we used 
Dla = 8 x IO- ” rather than the value 8 x IO- ’ appar- 
ently used by Voller et al. The location of the 0.5 
fraction solid isopleth agreed between the two models 
to within about 15%. These discrepancies most likely 
result from our use of a slightly different model (con- 
tinuum [1] vs two-phase [3]) and from our use of 
values of dimensionless parameters only approxi- 
mately equivalent to those in ref. 131. We refer the 
reader to Voller et al. [3] for direct comparison of the 
fraction solid and stream function fields. 

8. EXAMPLE CALCULATION OF 

SOLlDiFlCATlON OF SILICATE MELT 

8.1. Di8U 
In order to show the capabilities of our pure binary 

eutectic model for solidification and convection of 
silicate melt, we present in this section the results of 
one numerical experiment of the solidification of Di80 
melt. The model domain and boundary conditions 
are shown in Fig. 1. The left-hand wall of a two- 
dimensional container of Di80 with uniform tem- 
perature equal to 1337°C is suddenly cooled to sub- 
solidus temperature equal to 1265°C. 

The physical conditions and dimensionless groups 
for the Di80 experiment are given in Table 7. The 
the~ophysical properties are well constrained by 
experimental measurements f32, 331. The dimen- 
sionless numbers, Ra, Rs, and Le are restricted, for 
practical reasons, to values not strictly correct for 
basaltic magma. Specifically, the magnitudes of Ra 
and Rs imply a very small model domain, while the 

Table 7. Thermophysical properties and 
dimensionless groups for the Di80 numeri- 
cal experiment (see Table 2 for additional 

information) 

Property Units Value 

cr J kg-’ K-’ 1006 
h I”, J kg-’ 1.557 x lo6 
hE, J kg-’ 1.901 x 10” 
h,* J kg-’ 3.310 x lo5 
hf 3.547 x IO’ 
TCI J kF 1610 

Dimensionless parameters 
Ra 1 x LO6 
RS 2X IO6 
Pr 1000 
Le too 
Da lo- ‘@ 

St 0.181 

magnitude of Le exaggerates the importance of chemi- 
cal diffusion. The Darcy number chosen here is rather 
arbitrary, as we know of no measurements of K,, for 
Di-An. 

A 31 x 31 uniform grid with time step equal to 
1 x 10d4 was used. The simulation required about 
10000 s on a Cray X-MP. A verification run with a 
51 x 51 uniform grid and time-step of 5 x IO-’ gave 
results which differed in average enthalpy, average 
temperature, and average fraction solid by less than 
1% at dimensionless time 0.04. Downward flow along 
the left-hand wall begins due to the developing ther- 
mal gradients in the container at the same time as melt 
solidifies in regions near the wall. Figures 7-9 show 
the dimensionless velocity of the liquid, dimensionless 
temperature, normalized dimensionless composition 
of the mixture, and the fraction solid fields at three 
different times. 

The following discussion refers to Figs. 7-9. The 
velocity of the liquid vector diagrams show the vig- 
orous convection early in the evolution and the very 
sluggish convection which occurs at late times when 
most of the domain is mush. The velocity of the solid 
matrix is zero and the permeability is assumed iso- 
tropic throughout. Note the large temperature drop 
which occurs across the solid and mush region along 
the left-hand wall at i = 0.01. Much of the negative 
buoyancy associated with the cold wall is locked up in 
mush with permeability too small to allow significant 
convection. Later in the evolution, the mush region 
extends across the entire domain and convective vel- 
ocities are small. It is important to note that the Ray- 
leigh number based on the width of the domain may 
be large, but as solidification proceeds, convective 
vigor decreases drastically as the how becomes domi- 
nated by porous media convection. 

The mixture composition field (C*), where C* = 
(C- Cmi”)/(Cm,, - Cm,,), shows very interesting segre- 



2118 (a> 

(4 

FIG. 7. Velocity and scalar fields for Di80 solidification and convection problem at i = 0.01. (a) Velocity 
of the liquid : C,,,,, = 170. (b) Isotherms: contour interval is 0.06, F,,,.,.,, = 0.98. Note the large temperature 
drop across the solid along the left-hand wall and the convective temperature profile in the remainder of the 
domain. (c) Isopleths ofdimensionless normalized mixture composition C* (C* = (C- C,,,)/(C,,, - C,,,,,)) : 
contour interval is 0.1. The maximum and minimum mixture compositions are : Cm,, = 0.2028 ; 
C,,, = 0.1989. A region of mush enriched in eutectic composition melt ahead of the solidification front 
can be seen as a ridge to the left of the labeled 0.8 isopleth. The overall differences in mixture composition 
produced by the solidification process are small. (d) Isopleths of fraction solid : ,A,,,, = 0.0. ,f;,,,,$, = I. Along 

the left-hand wall, 1; = I : outside of that is a thin region of mush: the rest of the domain is liquid. 
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Frc. 8. Velocity and scalar tields at i = 0.05. (a) Velocity of the liquid : I:,,,, = 0.25. Only the lower right- 
hand corner of the domain contains liquid capable of significant convection. (b) Isotherms: contour 
interval is 0.056, f_,,, = 0.95. Temperature profiles are nearly straight and unperturbed by the weak 
convection. (c) lsopleths of C* : contour interval is 0. I ; C,,, = 0.2030 ; C,,, = 0.1995. The enriched region 
is moving to the right and widening. The corresponding depleted region occurs near the left-hand wall just 
inside the solidification front (see the 0.1 isopleth). (d) Isopleths of fraction solid : /;,,, = 0.006, L,,, = I. 

A narrow region with ,/, = I exists along the left-hand wall while the rest of the domain is mush. 
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FIG. 9. Velocity and scalar fields at i = 0.10. (a) Velocity of the liquid: d,,, = 0.005. Convection in the 
domain is very weak. (b) Isotherms: contour interval is 0.054, f,,,,, = 0.91. (c) Isopleths of C* : contour 
interval is 0.1 ; C,,,,, = 0.2032 ; C,,, = 0.2004. Enriched and depleted regions are further to the right, and 
the overall variation of mixture composition is small. (d) Isopleths of fraction solid : f,,i. = 0.04, &,,,, = 1, 

Solid regions exist along the left-hand wall while the rest of the domain is mush. 

gation patterns. At early time, there is a band of low 
values (a valley) near the cold wall and a region of 
higher values (a ridge) just outward from it. The 
valley represents areas where the composition of the 
liquid is eutectic. It appears as a low point because 
there is about 50% solid there, and the mixture com- 
position takes into account the 50% of pure Di 
present. Toward the wall from this valley, the value 
of C* increases up to the value of Co, the initial bulk 
composition where f, = 1. Toward the right from the 
valley, C* increases into a broad ridge. This ridge is 
caused by the expulsion of An-rich melt during the 
solidification of pure Di at temperatures above the 
solidus and below the liquidus. The fraction solid of 
pure Di in this region is not large enough to counteract 
the effect on C* of the rejected solute (An-rich melt). 
This valley and ridge pattern is observed throughout 
the evolution. The edge of the ridge appears to be 
eroded by convection at later times and its shape 
reflects the sense of even very weak convection. It 
should be emphasized that the overall magnitude of 
the mixture compositional differences is very small, 
but the segregation pattern is none the less interesting 
and certainly caused by the solidification process. 

The evolution of the fraction solid field shows the 
growth of the mush region. The completely solidified 
region along the wall can be seen clearly in Fig. 9(d). 
Note the steep gradient in fraction solid which occurs 

at the solidus temperature. The mush region extends 
across the whole domain by i = 0.10 (Fig. 9). 

9. CONCLUSIONS 

The phase change and convection of viscous pure 
binary eutectic silicate melt can be numerically 
modeled by the same methods as have been suc- 
cessfully applied to metallurgical systems. The pure 
binary eutectic character is accommodated by defining 
a mixed solid of eutectic composition and explicitly 
considering its enthalpy of fusion. The large viscosity 
of silicate melt causes slow convergence of the iterative 
SIMPLER algorithm. This problem can be overcome 
by the use of variable under-relaxation in the momen- 
tum equations. Our model has been tested and agrees 
substantially with the work of other researchers. An 
example simulation of the solidification and con- 
vection of Di80 demonstrates the capabilities of the 
model and at the same time shows that solidification 
decreases convective vigor by (1) controlling heat flow 
along the cold wall and (2) by virtue of producing a 
solid matrix which forces porous media flow to occur. 
Interesting transient compositional segregation pat- 
terns form during the evolution of the solidification 
systems. 

We emphasize in closing the many extensions to the 
model which are possible and list some of them here 
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in order of increasing difficulty : (1) extension to three 
dimensions; (2) use of complex and non-linear 
viscosity and other transport property functions; 

(3) implementation of more realistic muhicompon- 
ent systems rather than two-component systems; 
(4) application of thermodynamic phase equilibria 
rather than the local thermodynamic equilibrium 
approximation ; and (5) inclusion of crystal 
nucleation and growth rate functions. Extensions l- 
3 are straightforward; extensions 4 and 5 are insep- 
arable and considerably more involved than l-3. 

However, in theory. all of these extensions can be 
accommodated within the framework of the present 
model to lead to more accurate simulations of com- 
plex phase-change phenomena. 
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APPENDIX 

The composition of the mixture in a binary system is given 

by 

C=s,C,+(l-.f,)G. (Al) 

For supersolidus mush regions (f, < (T,,,- T,,)/(T,,,- T,,,)) 
in the pure binary eutectic system shown in Fig. 2 with bulk 
composition C,, the liquid and solid compositions are given 

by 

C 
c, = __ 

(1 -.fJ 
(A21 

c, =o. (A3) 

At the solidus temperature (1; > (T,,,- T,,,)/(T, - T,,,)), the 
liquid and solid compositions are 

C, = C,“, (A4) 

c, = (L-~)c., (A5) 

Substituting equations (A4) and (A5) into equation (Al), 
one derives the equation for the composition of the mixture 
at and below the solidus temperature 

c=.f;(i:-~~~“)c,,,+~l-.f;~c;..,. (A6) 

MODELISATION NUMERIQUE DE LA SOLIDIFICATION ET LA CONVECTION DANS 
UN SYSTEME BINAIRE EUTECTIQUE VISQUEUX 

R&sum&-On modelise numtriquement la solidification et la convection dun systtme stilicate binaire 
eutectique diopside-anorthite (Di-An). On utilise une enthalpie de fusion ponder&e par la masse pour tenir 
compte de la seconde phase solide (An) qui cristallise a la temperature du solidus. On utilise une relaxation 
pour aider la convergence des equations de quantite de mouvement dans l’application de l’algorithme 
SIMPLER utilisi: pour resoudre les equations bidimensionnelles de bilan. Des experiences numeriques de 
solidification de Di80 montrent qu’un grand saut de temperature qui se produit a travers les regions de 
solide et de boue fait dtcroitre l’intensitt de la convection dans le liquide. Des configurations inttressantes 

de segregation sont produites pendant la solidification du Di80. 

NUMERISCHE MODELLIERUNG DER VERFESTIGUNG UND KONVEKTION IN 
EINEM VISKOSEN REINEN ZWEISTOFF-EUTEKTIKUM 

Zusammenfassung-Verfestigung und Konvektion eines reinen bit&en eutektischen Silikat-Systems aus 
Diopside-Anorthite (Di-An) werden numerisch modelliert. Eine massenbezogene Schmelzenthalpie wird 
zur Beriicksichtigung der zweiten festen Phase (An) benutzt, die bei Erreichen der Solidus-Temperatur 
kristallisiert. Zur Unterstiitzung der Konvergenz der Impuls-Gleichungen in der Realisierung des 
SIMPLER-Algorithmus, der zur Lijsung der zweidimensionalen Kontinuums-Erhaltungsgleichungen 
benutzt wird, verwendeten die Autoren variable Unterrelaxation. Die numerische Untersuchung der Kristal- 
lisation von Di80-Schmelze zeigt, dal3 quer durch den Feststoff ein groBer Temperatur-Abfall auftritt und 
aullerdem Erweichungszonen, welche die Konvektionsintensitat in der Fliissigkeit verringern. Bei der 

Kristallisation von Di80-Schmelze wurden interessante Ausseigerungsmuster erzeugt. 

WICJIEHHOE MOfiEJIIiPOBAHHE I-IPOLIECCOB 3ATBEPAEBAHWI M KOHBEKLIMR B 
BllJKOR PWHAPHOn 3BTEKTWIECKOn CIICTEME 

AHHBTlllUHl-IIpOBOrulTCK THcneHHoe MonenHpoearrHe IlpOWCCOB 3aTnepnesawia H KOHBeKUHH &Hap- 
HOii 3BTeKTHWCKOH CHCTeMM &HOHCHB-aHOpTHT (Di-An). YCpeJnieHHaa IT0 MaCG? 3HTa.ItbnHII nJtaBJteHHK 
HcnonbsyeTcn arm ygeTa ~~0p0ii ~Bepnok @3br (An), Kpricrannri3ymmeficn np~ Tehfneparype conenyca. 
DpH ‘iHCJleHHOh4 CYeTe HCIIOBb3yeTCSl HHIKHRB PWIaKCWHK, YTO CllOCO6CTByeT CXOJtHMOCTH ypaBHeHHti 
coxpaHeH&in KonHwcrBa neartemis npH BeeneHHii anropHTMa SIMPLER, npriMeiineMoro nnn pememin 
nByMeI3HbIX ypaBHeHHii COXpBHeHHa KOHTHHyj’Ma. rIHCJleHHhIe 3KCllepHhfeHTbl n0 3aTBepneBaHHm paCn- 
nana Di80 noKa3bmamT, ST0 Ha Teepaboc H neyx4asahtx yKacrKax npoHcxonHT 3HarHTenbHbrB nepenan 
TeMnepaTypbl, ST0 lTpHBOJHiT K CHHHreHHK) HHTeHCHBHOCTH KOHBeKUHH B XCHAKOCTH. DOJlyYeHbt HHTepeC- 

Hble KapTHHbl KOMn03HHHOHHOti CerperalulH B npOtBW% 3aTBepneBaHHR Di80. 


